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Abstract: Using a vector error correction model I test whether shocks in the funding liquidity
conditions in the U.S. and Europe separately explain deviations from the covered interest parity (CIP)
between the U.S. Dollar and the Mexican Peso. I find that: (1) Apparent deviations from the CIP seem to
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stable long-run equilibrium relation emerges when I include the effects of funding liquidity shocks
stemming from the U.S. and Europe. (3) The exchange rate forward premium adjusts towards a long-run
equilibrium relation given by the CIP. (4) Surprisingly, the yield on 1-month Mexican CETEs has its
own stochastic trend despite the strong relation between the U.S. and Mexico's economies. (5) Analysis
confirms that both future and spot exchange rates are affected by shocks stemming from the U.S.
Treasury Bills, the funding liquidity in the U.S. and Europe, and the Mexican CETEs.
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1 Introduction

In this paper, I test the hypothesis that an important friction causing apparent deviations

from the covered interest parity (CIP) between the U.S. Dollar (USD) and the Mexican

Peso (MXN) stemmed from the reduced liquidity conditions -defined as (i) the availability

of funds to undertake financial transactions in assets that are perceived riskier than those

with highest rate by rating agencies, and (ii) higher quality or quantity collateral demands-

in the largest financial markets. The CIP is defined with a forward contract on the value

of the currencies. Thus, a second source of frictions, might be found in the risk for the

counterpart fulfilling his part of the contract. I test whether shocks in funding liquidity

generate deviations from the CIP, and whether they persist in the long run.

Using a vector error correction model (VECM) with five variables ((i) the 1-month

exchange rate forward premium, (ii) the yield on 1-month U.S. Treasuries, (iii) the yield

on 1-month CETEs, (iv) the LIBOR-OIS1 spread in USD and (v) the analogous measure

for Europe) I find first that apparent deviations from the CIP are persistent. Second, it is

necessary to include the effects of funding liquidity shocks in the U.S. and Europe to have

a stable long-run equilibrium relation. This means that apparent arbitrage opportunities

do not remain after considering a closer measure to the true costs of funding for the

agents. Third, only the exchange rate forward premium is adjusting towards the long-run

equilibrium relation that explains deviations from the CIP.

As a fourth, and surprising finding, the yield on 1-month Mexican CETEs has its own

stochastic trend despite the strong relation between the U.S. and Mexico’s economies.

Finally, the analysis with a structural vector error correction model (SVECM) confirms

that both, spot and forward, exchange rates are affected by shocks stemming from the U.S.

Treasury Bills and the two measures of funding liquidity.

The financial crisis born in the summer of 2007 -labelled Great Recession- caused high

volatility in a number of markets for commodities and securities. The futures market for

the Mexican currency did not escape this event. In particular, apparent deviations from

the fundamental equilibrium condition of the CIP are observed consistently after August

of 2007 and through mid-2012. The consensus among economists and market analysts

points to the wealthiest economies as a source of several financial frictions induced to the

emerging market economies, including Mexico (see Rajan (2011) and Admati and Hellwig

(2013) for a comprehensive account of the Great Recession).

Mexico is an interesting case to analyse since its economy presents solid macroeconomic

indicators and has shown a quick recovery after the financial shock. Computation of

1Overnight Index Swap.
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deviations from the CIP2 involving USD-MXN future contracts, the yields on U.S. Treasury

Bills and Mexico’s CETES, all for 1-month is shown in figure 1. The figure also shows the

dates of major shocks from the start of the Great Recession in the summer of 2007 as dated

by Eichengreen, Mody, Nedeljkovic, and Sarno (2012).

The displayed behaviour of the deviations from the CIP is consistent with economic

theory -since it is around zero- for the period January 2003 to August 2007, with a slump

in 2003 and a slight change around 2006. Major disruptions generated by severe financial

stress events such as the Bear Stearns buyout, the Lehman Brothers failure, the TARP

process within the U.S. Congress and the AIG’s bailout are represented by extremely large

deviations from the CIP. Finally, after the second half of 2009, the mean of the deviations

is positive. In this period the main sources of financial stress were the fragility of Europe’s

banking sector and the difficulties of Greece, Spain and Italy to roll-over their debt.

Figure 1: Deviations from the CIP in percentage points for period January 2nd 2003 to July 11th 2012.
Own calculations for weekly averages with expresion (2.3) shown below. Source: Bloomberg.

The following example provides some intuition and motivates the hypothesis. An in-

vestor -a trader- in New York wakes up with one of the following news: (1) Greece has

announced that two of its major banks have borrowed funds from the emergency window of

the European Central Bank. (2) Spain has announced that it will fail to reduce its budget

deficit as GDP percentage to its goal. (3) The U.S. economy created less new jobs than

the market expected in the previous quarter. A priori, it seems plausible that each of the

previous events will cause funding liquidity in financial markets to fall. In particular, think

2Expression (2.3) below details the computation of the CIP.
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of a trader that will see its margin credit reduced.3 This tighter constraint will reduce his

trading on “riskier” assets such as emerging markets’ currencies, thus the interest rate

differential will no longer be the only determinant of the transaction costs involved. This

trader would only trade in the USD-MXN market if the premium is “high enough”, thus

affecting the arbitrage transactions as explained in Brunnermeier and Pedersen (2009).

The sequence of financial shocks observed from the summer of 2007 all the way through

the summer of 2012 suggests that there were two main sources or types of shocks: (1)

U.S.-born and (2) Europe-born. Thus, I divide funding liquidity shocks in two types which

proves to be useful since both types seem to play a relevant role in explaining deviations

from the CIP. Shocks born in the U.S. are straightforward to relate to deviations from

the CIP provided, among other reasons, that: (i) The U.S. economy is Mexico’s exports

main destiny -changes in the demand for goods made in Mexico affects the risk premium

firms must pay when they look into sources of funding. (ii) The largest Mexican firms

have access to credit valued in USD -provided by U.S. based financial firms. (iii) There is

relatively high mobility of labour between the two economies -which changes the relative

prices of production inputs, among them the interest rate. A priori, however, Europe-born

shocks are not as directly related to deviations from the CIP but they are still relevant as

I argue below.

Despite the interconnectedness of financial markets, relating events in Europe to de-

viations from the CIP deserves a deeper analysis. The lack of a clear relation between

deviations in the CIP and Europe-born shocks can bias analysts and economists’ judge-

ment towards the claim that these shocks have only a short-run effect. A formal test of

long-run effects should provide sound information regarding the persistence of the a priori

labelled short-run shocks.

Tests of the CIP have been present in the literature for many years. Aliber (1973)

is among the pioneers of testing its validity along with Frenkel and Levich (1975) and

Frenkel and Levich (1977). For the particular case of the CIP involving the USD-MXN

market, Carstens (1985) is the earliest reference I found. The focus of his PhD dissertation

is on the period 1980-1982. He analyses the determination of the forward exchange rate

for delivery after three months. In that period Mexico had a fixed (spot) exchange rate

and observed considerable external imbalances concerning both its current account and

outstanding external debt. This led to a generalized belief that a devaluation of the MXN

with respect to the USD was about to take place. In a way, the present paper updates

Carstens’ analysis of the CIP for the USD-MXN market and is the first to use a SVECM.
3Even if systemic liquidity is not an issue in itself in the financial markets of the largest economies, financial stress on a

firm level would prevent the traders to take advantage of arbitrage opportunities if the asset underlying the transaction is
out of bounds in internal risk management policy.
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A further important difference with respect to Carstens’ work is that, for the period I

consider, Mexico has a floating exchange rate.

Khor and Rojas-Suarez (1991)4 test the CIP for Mexican internal debt denominated in

USD but payable in MXN and external debt. They use cointegration analysis to assess

the sovereign risk indirectly through a long-run relation between the aforementioned debt

instruments. Their work includes three main findings. First, the CIP is satisfied for most

of the period studied. Second, there is indeed a long-run relation between the interest rate

on USD denominated bonds and the yield to maturity of the bonds issued in the external

market. Finally, a policy implication in which they suggest that by improving internal

economic conditions, the interest rate of the Mexican debt will decline sensibly. Khor

and Suarez-Rojas’s work sheds light on the history of the CIP for Mexico in the period

1987-1991, which as Carstens’ work has a fixed exchange rate regime and the econometric

methods are single-equation based.

Within the liquidity theory literature, the work of Brunnermeier and Pedersen (2009)

studies the link between its two forms: (i) Market Liquidity of a particular asset -how easily

an asset can be sold. And (ii) Funding Liquidity -how easily a trader can get funding to

trade. The latter form of liquidity is the one I use in the present paper to explain deviations

from the CIP. Brunnermeier and Pedersen’s model shows how under particular conditions

market liquidity: “dries up”, is common across assets, relates to volatility, suffers flight-

to-quality, and co-moves with the market.

Regarding the use of multivariate econometric tools5 in the literature of CIP, using a

VECM, Peel and Taylor (2002) address the validity of the Keynes-Einzig conjecture which

can be stated as follows: Given deviations from the CIP, arbitrage opportunities will only

be taken if the premium is high enough (5% in the USD-Sterling exchange rate during

the 1920’s). Their analysis confirms the existence of the Keynes-Einzig conjecture for the

1920’s and provides a good description of the data needed to undertake research in the

topic.

Peel and Taylor’s work inspired the notation and the use of the econometric model for

the present paper. Since the CIP and its deviations are concerned with a fundamental

equilibrium condition, the VECM is a suitable tool to tests its validity in the long run.

The VECM also allows the use of the economic interpretation of its parameters for the

cointegrating relation, the loading matrix and the short-run dynamics. A key difference is

that I do not estimate bands a la Keynes-Einzig which would require nonlinear estimation

4I thank the anonymous referee for bringing to my attention this work.
5General issues involving Time Series Econometrics are well covered in Hamilton (1994). Estimation of the Cointegrated

VAR or VECM are thoroughly contained theoretically in Johansen (1996) and Lütkepohl (2005). Empirical issues are covered
in Juselius (2006).
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techniques.

To produce a survey of the vast literature around the CIP would require a great amount

of space, but among the relevant work for this paper I can include Clarida and Taylor

(1997), who test the Risk Neutral Efficient Market Hypothesis using a VECM, where they

find that forward markets do contain relevant information for forecasting. Also important

is the work of Shigeru and Shu (2006), who consider in their work a structural vector

autoregression (SVAR) model to identify various macroeconomic shocks to the uncovered

version of the CIP. Gonzalo and Ng (2001) propose a new way to estimate a SVECM

in which it is possible to identify the effects of permanent and transitory shocks. Faust,

Swanson, and Wright (2004) estimate the same SVAR as Christiano, Eichenbaum, and

Evans (1999) do. The difference lies in the identification strategy of the monetary policy

structural shocks.

Closely related literature also includes the work of Roll, Schwartz, and Subrahmanyam

(2007) where they argue that liquidity and the law of one price are related by double

Granger causation. Chordia, Roll, and Subrahmanyam (2008) explore a link between

liquidity and asset prices. In particular they study whether liquidity is associated with

an enhanced degree of intra-day market efficiency. Fong, Valente, and Fung (2010) use a

single-equation econometric model to assess whether liquidity of the Hong Kong Dollar -

U.S. Dollar market (USD-HKD) or changes in credit risk cause deviations from the CIP.

To develop the analysis I divide the paper in 5 further sections. Section 2 presents

briefly the theory behind the CIP. In section 3 I provide the details of the data set. The

econometric model and the empirical results are outlined in section 4. The concluding

remarks are found in section 5. Finally, two appendices contain information on data and

estimation output.

2 Theory

2.1 Covered Interest Parity

Economic theory predicts a number of stable relations among variables through time. Of

particular interest in the field of international finance is the covered interest rate parity,

or covered interest parity (CIP).6 This relation predicts that, in equilibrium, the difference

between the forward exchange rate and the spot exchange rate -the forward premium- must

be equal to the interest rate differential among the countries plus some transaction costs

-or minimum risk premium as discussed below. Formally, let St be the spot exchange rate

6Regarding the theory of the CIP and international finance in general, Sarno and Taylor (2002) is the main reference.
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of U.S. Dollars (USD) per 1 Mexican Peso (MXN) and let F k
t be the Forward contract

agreed at period t with maturity of k months.7 Also, let ikus,t and ikmex,t be the interest

rate on the sovereign bond with maturity of k months issued by the U.S. and Mexico,

respectively.8 Assuming individuals are rational and in the absence of financial frictions

and costs, the CIP says

F k
t

St

=
1 + ikus,t
1 + ikmex,t

. (2.1)

When deviations from the CIP occur, economic theory predicts that demand and sup-

ply forces will re-establish (2.1) through arbitrage. This is, inequalities provide risk-less

profitable opportunities in a friction-less set-up. An example of the latter is as follows.

Assume

F k
t

St

(1 + ikmex,t) > 1 + ikus,t. (2.2)

If an investor in the home country borrows B USD for k months at rate ikus,t, he can buy

B/St MXN. Then he can lend his B/St MXN at a rate ikmex,t. At the same time he signs

a forward contract where he promises to deliver (1 + imex,t)B/St MXN at the end of the

k months in exchange for F k
t B(1 + ikmex,t)/St USD. After this series of transactions, the

investor has in his hand F k
t B(1 + ikmex,t)/St USD and he owns B(1 + ikus,t). Using (2.2) it

is clear that he can pocket a profit of F k
t B(1 + ikmex,t)/St − B(1 + ikus,t) USD.

The arbitrage process described in the previous example ensures that (2.1) holds in the

long run, even if there are deviations in the short run. Empirical tests of the CIP, such as

those of Aliber (1973) or Peel and Taylor (2002), are based on the following approximation

to expression (2.1)

Pk
F k
t − St

St

= ikus,t − ikmex,t − c, (2.3)

where Pk is a factor that adjusts to annual terms the forward premium and c accounts for

possible transaction costs and minimum risk premium. Since I am interested in deviations

from the CIP, I will denote these by δkt and the forward premium by Φk
t = Pk

Fk
t −St

St
, that is

δkt = Φk
t − ikus,t + ikmex,t + c. (2.4)

7Throughout the paper I will follow the convention that the investor resides in the US (more generally he can always
borrow in USD and is looking to invest in Mexico). Thus, home country is the U.S. and foreign country is Mexico.

8In taking ikus,t to compute the CIP, it is implicitly assumed that the traders have access to loans at this rate. This is
may be true for traders at large banks.
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Figure 1 above shows relation (2.4) for k = 1.

2.2 Funding-Liquidity Measures

Among the key money-market indicators for “liquidity events” is the LIBOR-OIS spread,

LOIS. It has been used as a market indicator of interbank liquidity conditions by central

bankers as explained by Thornton (2009). In the international finance literature LOIS

has served as a proxy for credit risk (e.g. Fong et al. (2010)). It has a relatively simple

interpretation: when LOIS increases, the funding liquidity decreases. An excellent de-

scription of how both the LIBOR and the OIS are constructed is found in chapter 3 of

Smith (2010). She explains how the LIBOR is a rate on a risky loan while the OIS, being

an overnight rate -an approximate of the Federal Funds rate expectation- is for practical

purposes risk-free. She also provides details on how both rates are constructed, but a clear

set of characteristics is given:

“...the longer-term rate {LIBOR} is approximately equal to the probability of default

(ignoring liquidity effects) over the time interval [t, T], while the swap rate is the geometric

average of the probability of default in the intervals [t, t + 1], [t + 1, t + 2]....,[T-1, T]

generated by rolling over each of the spot rates at each time interval.”9

Thus, in the absence of negative financial events, the spread between the two rates is

small. In times of financial distress, however, loans signed in a LIBOR contract are riskier

than overnight loans. Thus making the LOIS large. Since my aim is to obtain a measure

of the effects from liquidity shocks on the CIP, I use the LOIS for the U.S. banking sector.

I also want to compare the effects of said shocks with those stemming from Europe, so I

include a measure for this, the LOIS for the European banking sector. Details on the data

set are found in the next section.

3 Data

All the analysis is conducted using weekly averages of daily data provided by Bloomberg.

Taking weekly averages helps me to avoid problems associated with each day (e.g. Friday is

more prone to suffer a sell-off if something important is due to occur during the weekend)

which reduces volatility.10 I consider the period January 2nd 2003 to July 11th 2012.

The sample starts 12 months after the end of the previous U.S. recession to the Great

Recession which the NBER’s Business Cycle Committee dates at November of 2001. This

9Smith (2010) pp 36. Content within curly brackets is mine. I thank Carlos Lever for suggesting Smith’s work.
10Appendix A contains the Bloomberg ticker id of each variable.
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allows me to check if deviations from the CIP during a period of “normal” conditions

behave according to the theory.

I analyse deviations from the CIP in 1-month sovereign bonds, that is δ1t as defined

in (2.3). I choose the 1-month maturity for the analysis since the market for Mexican

1-month sovereign debt has a larger volume than other maturities. Moreover, the future

contracts on the exchange rate should be of the same maturity as the debt contracts. To

ease notation I skip the super-index k = 1 in the variables from now on. Ft is the inverse

of exchange rate agreed on the forward contract with maturity k = 1 month at date t. I

take the inverse because I need USD per 1 MXN and the contracts are in MXN per 1 USD.

Analogously, St is the inverse of the spot exchange rate at date t. The variable ius,t is the

weekly average of the daily yield on the 1-month U.S. Treasury Bill in annual terms. This

is obtained from the “constant Maturity Treasury”.11 Finally, imex,t is the weekly average

of the daily yield of the 28-day (1-month) Treasury Certificate known as CETEs in annual

terms, and Pk = 12× 100.

Figures 2 to 5 show the levels and first differences of the main variables. It is worth

noting that all four series display a more volatile behaviour after the first semester of

2007. In particular, they show large deviations from the trend at the beginning of the

last quarter of 2008. This coincides with events like the Lehman failure and the AIG’s

rescue. Regarding Figure 3 two main reasons explain the (almost) zero yield of the 1-

month Treasury Bills: (1) The monetary stimulus provided by the Federal Reserve; and

(2) the flight-to-quality phenomenon where the U.S. received a large capital inflow despite

being the center of the financial crisis as detailed in Paulson (2010).12

The LOIS for the U.S. banking system, LOISus,t, is computed as the weekly average of

the difference between the daily 3-month LIBOR in USD and the Overnight Index Swap.

The variable LOISeur,t stands for the LOIS for Europe and is obtained by taking the weekly

average of the daily difference between the 3-month Euribor in Euros and the Overnight

Index Swap both published in the Euro Overnight Index Average (EONIA) website.

Behaviour of these two measures of funding liquidity shown in Figures 6 and 7 is stable

as expected up to the summer of 2007. In particular, LOISeur,t in Figure 7 displays several

“hump-like” events of financial distress, some of which were associated with sovereign debt

11The Constant Maturity Treasury is defined as: “Treasury Yield Curve Rates. These rates are commonly referred to as
“Constant Maturity Treasury” rates, or CMTs. Yields are interpolated by the Treasury from the daily yield curve. This
curve, which relates the yield on a security to its time to maturity is based on the closing market bid yields on actively traded
Treasury securities in the over-the-counter market. These market yields are calculated from composites of quotations obtained
by the Federal Reserve Bank of New York. The yield values are read from the yield curve at fixed maturities, currently 1, 3
and 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years. This method provides a yield for a 10-year maturity, for example, even if
no outstanding security has exactly 10 years remaining to maturity.” Source: http://www.treasury.gov/resource-center/data-
chart-center/interest-rates/pages/textview.aspx?data=yield

12As a side note, Paulson also makes several remarks regarding the LOIS as sign of stress in the markets.
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problems in southern Europe, provided the main creditors of these countries are European

commercial banks.

Figure 2: Weekly averages of daily data of the main variables S−1
t , F−1

t (left scale measured in MXN per
1 USD), ius,t, imex,t (right scale in percentage points). Source: Bloomberg.

Figure 3: Weekly averages of daily data of the U.S. Treasury Bill yields for 1 month ius,t is in percentage
points, and first difference. Source: Bloomberg.
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Figure 4: Weekly averages of daily data of the Mexican 28-day CETE imex,t is in percentage points, and
first difference. Source: Bloomberg.

Figure 5: Weekly averages of daily data of the Forward Premium Φt is in percentage points, and first
difference. Source: Bloomberg.
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Figure 6: Daily data of the LOISus,t is in percentage points and first difference. Source: Bloomberg.

Figure 7: Daily data of the LOISeur,t is in percentage points and first difference. Source: Bloomberg.

At this point it is worth noting that all variables are I(1), that is, when testing for

a Unit Root, I fail to reject the null-hypothesis as Table 1 shows. Borderline cases arise

for Φt, LOISus,t, and LOISeur,t. In particular, the DF − GLS test proposed by Elliott,

Rothenberg, and Stock (1996) with the highest power, applied to the liquidity measures

only rejects the null-hypothesis at the 1% level of confidence.
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Variable ADFμ ERS PPμ

Φt -2.9675* -1.5819 -3.3449*
ius,t -0.6385 -0.7106 -0.6908
imex,t -1.4084 -0.7499 -1.3028
LOISus,t -2.6793 -2.4908* -2.7177
LOISeur,t -2.9590* -2.3942* -2.4119
5% Critical Value -2.8673 -1.9414 -2.8671

Table 1: Unit Root Tests for the main variables and the LOISus,t and LOISeur,t. Columns show test-
statistic for the Augmented Dickey-Fuller test with a mean (ADFμ), the Elliot-Rothenberg-Stock (ERS)
DF −GLS test with a mean and the Phillips-Perron test with a mean ((PPμ). All tests were carried out
in levels with a constant. Null Hypothesis: there is a Unit Root. The lag-length is chosen by E-Views
according to the Schwarz Information Criterion with a maximum of 17. * Reject the null hypothesis.

Note however, that if I test for a unit root on the period of the crisis onwards, this is,

from August 3rd of 2007 to July 6th 2012, all variables are I(1) as shown in Table 2. This

is fairly direct to explain. The LOIS·,t observations were very stable before the crisis since

there were no major liquidity strains before the summer of 2007. Thus, I will treat all

variables as I(1). This has some consequences in terms of the end-results for this paper,

which I will discuss below.

Variable ERS
Φt -1.6523
ius,t 0.4254
imex,t 0.0918
LOISus,t -1.7426
LOISeur,t -1.8605
5% Critical Value -1.9414

Table 2: Unit Root Tests for the main variables and the LOISus,t and LOISeur,t for the sub-sample
August 3rd of 2007 to July 6th 2012. Columns show the Elliot-Rothenberg-Stock (ERS) DF −GLS test
with a mean. Null Hypothesis: there is a Unit Root. The lag-length is chosen by E-Views according to
the Schwarz Information Criteria with a maximum of 15.

A final word on why I choose to work with weekly averages is relevant here. There is a

great deal of autocorrelation induced by the fact that the frequency of the original data is

daily whereas Ft matures in 30 days. This is why, contrary to what is typically observed,

taking weekly averages reduces autocorrelation. This issue is important when specifying

the model below.
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4 Econometric Model and Estimates

There are several reasons that made the VECM and SVECM suitable tools for the analysis.

(1) The VECM model allows the explicit analysis of I(1) variables and tests the existence

of a long-run stationary relation among them, in this case, the CIP. (2) The VECM allows

the estimation of Impulse Response Functions (IRFs) with the corresponding orthogona-

lization of the residuals. (3) The VECM can be transformed into its “common trends

representation” which allows me to write each equation of the system as a linear combina-

tion of residuals from the VECM (i.e. a Moving Average form). (4) Finally, it is possible

to obtain a SVECM that allows me to distinguish between short-run shocks and long-run

shocks, producing IRFs without the Choleski decomposition. All estimations in the rest

of the paper are made in Dennis, Hansen, Johansen, and Juselius (2005) CATS in RATS,

version 2 through Maximum Likelihood, unless stated otherwise.

To start the econometric analysis, let n = 5 and define the n× 1 variable vector

Xt = (Φt, ius,t, imex,t, LOISus,t, LOISeur,t)
′ ,

and the vector autoregressive model in its vector error correction form of order p, VECM(p),

ΔXt = αβ′Xt−1 +
p−1∑
s=1

ΓsΔXt−s + εt, (4.1)

εt = (εΦ,t, εius,t, εimex,t, εLOISus,t, εLOISeur,t)
′ , (4.2)

εt ∼ N (0,Σ) , (4.3)

where Π = αβ′ is a n × n matrix, α and β are n × r matrices, Γs are n × n short-run

effect matrices, εt is the vector containing the reduced form errors, and the n × n matrix

Σ is symmetric and is allowed to be non-diagonal. Note that all elements of Xt are I(1)

as shown in Tables 1 and 2, thus, a model such as (4.1) involves simultaneously I(1) and

I(0) variables. The latter means that a necessary condition for the model to work is the

presence of r(= rank(Π)) cointegrating relations.

4.1 Specification

Lag-Length

The first step in specifying a VECM(p) is to choose the number of lags, p, used in

estimation. In general, I can either follow an information criterion such as the Bayesian
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Information Criterion (BIC), the Hannan-Quinn Criterion (H-Q), or an autocorrelation

criterion. In this paper I follow the latter since the data has a high degree of autcorrelation

on the levels of the variables, and if this is not corrected the inference analysis would be

biased. Table 3 shows the BIC, the H-Q, and the Lagrange Multiplier Test (LM) for

autocorrelation for values of p = 1, ..., 10.

p reg BIC H-Q LM(1) LM(p)
10 51 -18.490 -19.824 0.160 0.612
9 46 -18.682 -19.885 0.000 0.000
8 41 -18.917 -19.990 0.148 0.454
7 36 -19.148 -20.089 0.025 0.232
6 31 -19.421 -20.231 0.777* 0.489
5 26 -19.631 -20.311* 0.005 0.394*
4 21 -19.760 -20.309 0.000 0.000
3 16 -19.885 -20.304 0.000 0.000
2 11 -19.888* -20.176 0.000 0.000
1 6 -19.528 -19.685 0.000 0.000

Table 3: BIC is the Bayesian Information Criterion on lag length determination. H-Q is the Hannan and
Quinn Criterion. LM(p) is the Lagrange Multiplier Test of autocorrelation including p lagged residuals,
for p = 1, ..., 10. *Is the suggested lag according to each criterion.

From Table 3 I conclude that p = 6, which will “clean” the autocorrelation issue since

both LM tests fail to reject the null of no-autocorrelation. In economic terms, the absence of

autocorrelation amounts to the individuals behaving accordingly to a rational expectations

set-up. I am not concerned with issues of over-parametrization since the sample size is 496

observations.

Residual Tests

The canonical VAR analysis requires the residuals to satisfy two additional characteris-

tics, normality and homoskedasticity. These, however, are superseded by somewhat recent

advances in econometrics. On the one hand, Normality is no longer a necessary condition

for one to be able to estimate through Maximum Likelihood, I can always rely on Quasi-

Maximum Likelihood techniques. Moreover, the CATS software contains the methods

proposed by Rahbek, Hansen, and Dennis (2002), so that Heteroskedasticity is no longer

an issue in estimating a VAR.

The next step is to check if the specification suggested in Table 3 is indeed free from

autocorrelation. Table 4 shows the results for the Ljung-Box and LM tests. In all cases I

fail to reject the null hypothesis of no-autocorrelation.
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Tests for Autocorrelation(lags) χ2 p− value
Ljung-Box(122): 2951.809 0.247

LM(1): 17.983 0.843
LM(2): 20.700 0.709
LM(5): 33.120 0.128
LM(10): 29.216 0.255

Table 4: Autocorrelation tests. χ2 statistic and p− value. The null hypothesis is no-autocorrelation.

Rank Test

One of the appealing features of model (4.1) is that it allows me to test whether the long-

run relations predicted by the economic theory are satisfied by the data. In particular,

when each of the equations β′Xt−1 is I(0) the long-run relations are satisfied, this is, a

subset of elements of Xt are cointegrated. In fact, each row, (β′Xt−1)j, is known as a

cointegrating relation. Note that j = 1, 2.., r < n. Another appealing feature of the model

(4.1) is that it allows me to impose restrictions on the matrix β. Moreover, if the number

of restrictions in each row β′j is larger than r − 1 then these are testable.

The latter means that knowledge of r, the cointegrating rank, is a necessary condition

for inference on the cointegrating relations and the n− r common trends. Johansen (1988)

tests provide a reliable way to select r.

n− r0 r0 Trace-Stat Trace-Stat* Crit-5% p− value p− value∗
5 0 103.795 103.795 76.813 0.000 0.000
4 1 46.272 46.272 53.945 0.208 0.208
3 2 20.281 20.281 35.070 0.709 0.709
2 3 9.120 9.120 20.164 0.727 0.727
1 4 1.326 1.326 9.142 0.890 0.890

Table 5: n − r is the number of Common Trends. r is the cointegrating rank (i.e. the number of
cointegrating relations). Trace-Stat is Johansen’s Trace Statistic. Crit 5% is the critical value for the
size of 5%. Trace-Stat* is Johansen’s small sample corrected Trace Statistic. The null hypothesis is:
cointegrating rank = r0.

Table 5 contains the tests for several possible values of r denoted r0. The table must be

read from the top and r is determined when we fail to reject the null of r0 cointegrating

relations. In this particular case, Johansen’s Trace Test suggests r = 1. Estimation
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imposing r = 1 and normalizing on the first element of β̂ yields13:

β̂′Xt = Φt −1.032
[−11.786]

ius,t + 0.815
[8.145]

imex,t + 5.385
[6.405]

LOISus,t −4.344
[−4.952]

LOISeur,t + 0.785
[1.360]

. (4.4)

Equation (4.4) presents the cointegrating relation where all coefficients are statistically

significant at the 5% level except the constant.14 At this point it is not possible to interpret

the estimates. I can, however, discuss the stationarity of the cointegrating relation. Figure

8 presents β̂′Xt and suggests that it is stationary, as desired. In Table 6 I show several unit

root tests confirming the latter. I include two versions of the Augmented Dickey Fuller

and Phillips-Perron tests, with and without a mean. The Table also shows the Elliott-

Rothenberg-Stock test DF −GLS test with a mean. Results show unambiguous support

for the absence of a unit root, both with no deterministic terms and when considering the

mean. The unit root analysis confirms the existence of one cointegrating relation and the

validity of Johansen’s Test.

Figure 8: Cointegrating Relation β̂′Xt.

13The interested reader can find full estimates of the long-run matrix ̂Π loading α̂, and short-run matrices ̂Γj for j = 1, , ...5
in Appendix B.1. In particular, Tables 13 - 19.

14Throughout the paper t− statistics are presented in square brackets unless stated otherwise.
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Variable ADF PP ADFμ ERS PPμ

β̂′Xt -7.7722 -7.7895 -7.7641 -7.2881 -7.7814
5% Critical Value -1.9414 -1.9414 -2.8671 -1.9409 -2.8671

Table 6: Unit Root Tests for the cointegrating relation β̂′Xt. Columns show test-statistic for the Aug-
mented Dickey-Fuller test (ADF ) and the Phillips-Perron test (PP ) with no mean or trend. ADFμ and
PPμ include a mean and ERS is the Elliot-Rothenberg-Stock test with a constant. Null Hypothesis: there
is a Unit Root. The lag-length is chosen by E-Views according to the Schwarz Information Criteria with
a maximum of 17.

4.2 Testing the Theoretical Relation

Assuming that a Data Generating Process can be modelled by a VECM(p) entails the

a priori conjecture that relations among the elements of Xt are stationary on the long-

run. I use the economic theory outlined in Section 2 to justify the only cointegration

relation: the CIP.15 Economic theory predicts a stable relation among its components,

which in econometric terms means that δt as defined in equation (2.4) is stationary. Let

β = (β1, β2, β3, β4, β5, c)
′ define the parameters of the CIP to be estimated. If the data

obey the CIP in the long run, then the estimate β̂ will satisfy:

1. β̂1 ≈ −β̂2.

2. β̂1 ≈ β̂3.

3. β̂4 and β̂5 not statistically different from zero.

Results displayed in equation (4.4) more or less satisfy conditions (1) and (2), however,

condition (3) is far from being observed. The VECM(p) allows me to test whether I

can impose (3). The theory of the VECM states that by imposing the over-identification

restrictions on β, I can test whether these restrictions are valid statistically. I need r − 1

restrictions on β to have just-identification.

Thus, by imposing at least one restriction, I can have over-identification. Define β̃R as

the restricted estimate of β, for the set of restrictions R. The first set of restrictions to

15In general, if r had turned out to be larger than one, at least a second cointegrating relation could be justified using the
inherent relation between the U.S. yields and interbank lending conditions.
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test, R = A, is defined as

β̃A
1 = −β̃A

2 , (4.5a)

β̃A
1 = β̃A

3 , (4.5b)

β̃A
4 = 0, (4.5c)

β̃A
5 = 0. (4.5d)

Imposing the restriction set (4.5a)-(4.5d), I obtain the following estimates

β̃A′Xt−1 = Φt−1 − ius,t−1 + imex,t−1−0.252
[−1.643]

= δt−1. (4.6)

Before continuing the analysis, I test whether the restrictions imposed in (4.6) are valid.

As it turns out they are not. Table 7 presents the test which rejects the null hypothesis of

β̃A being valid.16

Test set A χ2 p− value
Test of Restrictions 28.905 0.000
Bartlett Correction 23.231 0.000

Table 7: Test for the validity of the Restricted Model A versus the unrestricted model. Null hypothesis:
Restrictions are valid.

Since I want to test whether changes in funding-liquidity are affecting the CIP in the

long-run, I define the restrictions set B as a subset of A where B is composed only by

(4.5a) and (4.5b). That is, define β̃B as the restricted estimate of β, where β̃B
1 = −β̃B

2 and

β̃B
1 = β̃B

3 are imposed and both β̃B
4 and β̃B

5 are left free. Estimating the model under the

restriction set B yields

β̃B′Xt−1 = Φt−1 − ius,t−1 + imex,t−1 + 3.93
[5.977]

LOISus,t−1 −2.78
[−3.977]

LOISeur,t−1 −0.502
[−3.307]

= δt−1 + 3.93
[5.977]

LOISus,t−1 −2.78
[−3.977]

LOISeur,t−1 −0.502
[−3.307]

= δBt−1. (4.7)

As shown in Table 8, I failed to reject the Null Hypothesis stating that restriction set

B is valid at the 5%. This means that there is a stationary long-run relation that includes

16Since the restrictions are not valid I do not include estimates for the long-run matrix ˜Π loading and short-run matrices,
α̃ ˜Γj for j = 1, , ...5.
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the liquidity measures and has a mean different from zero.

Test set B χ2 p− value
Test of Restrictions 5.681 0.058
Bartlett Correction 4.442 0.109

Table 8: Test for the validity of the Restricted Model B versus the unrestricted model. Null hypothesis:
Restrictions are valid.

Once the validity of equation is established, I can test whether δBt−1 is stationary. Figure

9 provides a suggestive hint of δBt−1 being stationary. This is confirmed by the results of

several unit root tests included in Table 9.17 This is, δBt , as defined in equation (4.7), is

indeed stationary, thus confirming cointegration. With δBt in hand I can now provide an

economic interpretation for the econometric results obtained so far.

Figure 9: Cointegrating Relation β̂B′
Xt = δBt .

Variable ADF PP ADFμ ERS PPμ

β̃B′
Xt = δBt -7.9589 -7.8918 -7.9508 -7.5363 -7.8835

5% Critical Value -1.9414 -1.9414 -2.8671 -1.9409 -2.8671

Table 9: Unit Root Tests for the cointegrating relation β̂′Xt = δBt . Columns show test-statistic for the
Augmented Dickey-Fuller test (ADF ) and the Phillips-Perron test (PP ) with no mean or trend. ADFμ

and PPμ include a mean and ERS is the Elliot-Rothenberg-Stock test with a constant. Null Hypothesis:
there is a Unit Root. The lag-length is chosen by E-Views according to the Schwarz Information Criteria
with a maximum of 17.

17Appendix B.2, Tables 21 - 27 contains estimates for the short-run parameters. These are discussed below.
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4.3 Economic Interpretation

Long-Run

Equation (4.7) should be interpreted as a stable long-run relation between the five

elements of Xt. In particular, I can write said equation as

δt = −3.93
[5.977]

LOISus,t + 2.78
[3.977]

LOISeur,t + 0.502
[3.307]

+ νt (4.8)

where νt is a mean zero stationary random variable as implied by Table 9, and the units

are in percentage points (100 basis points).

In the long run, the relation between δt and LOISus,t is negative, which can be ratio-

nalized in the following way: (1) An increase in the LOISus,t spread signals an increase of

the perception of credit risk -and thus a decrease in funding-liquidity- in the U.S. (2) The

increase in LOISus,t will cause δt to decrease since a flight-to-quality appreciates the USD

diminishing Φt.

The relation between δt and LOISeur,t is positive since: (1) An increase in LOISeur,t

signals a decrease in funding-liquidity in Europe. (2) There is a flight-to-quality to the

U.S.s’ assets. (3) This causes: (a) An appreciation of the USD, thus Φt increases (closer

to zero); or (b) ius,t decreases; or (c) both.

Finally the constant means that there is a minimum profit investors demand to trade

MXN and Mexican Treasuries. It is worth noting that despite the similar nature of changes

in liquidity funding conditions, the source of the effect matters. In particular, the two

sources of liquidity shocks have opposite sign on δt. Now I move on to analyse short-term

effects and relations.

Short-Run

In general, short-run effects are more difficult to reconcile with theory since the model

is only a partial representation of reality. It is illustrative, however, to let the data speak

and use these estimates to construct a narrative around them since all specification and

significance tests are valid. Think of the VECM(6) as a system that has an equilibrium in

which ΔXj = 0. Estimates of the short-run parameters can prove useful for forecasting or

fitting the model to special circumstances. To save space I will write only the statistically

significant coefficients of each equation. The interested reader can find the full set of

estimates in Appendix B.2.
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Now I will use results from Tables 21 and 23-27 to construct the short-run equations.

The estimate for the short-run adjustment equation for Φt is given by

ΔΦt = −0.235
[−6.744]

δBt−1 −0.302
[−6.268]

ΔΦt−1 −0.767
[−3.875]

Δimex,t−1 + 2.457
[4.646]

ΔLOISus,t−1

− 0.229
[4.644]

ΔΦt−2 −0.618
[−2.992]

Δimex,t−2 − 0.170
[−3.484]

ΔΦt−3 − 1.407
[−2.690]

ΔLOISus,t−3

− 1.965
[−2.288]

ΔLOISeur,t−3 − 0.482
[−2.240]

Δius,t−4, (4.9)

note that if all elements expressed as differences are zero -as they should be in the long run-

then the only element left is δBt−1. Assume that we are looking at the short-run horizon and

differences are not necessarily zero. Inspection of expression (4.9) shows that ΔΦt responds

negatively to δBt−1, that is, the forward premium is “pulled” back to the equilibrium by the

cointegrating relation.

Autocorrelation of Φt shows up as three lags of ΔΦt. Interestingly, there is no effect

from ius,t of the previous three weeks. A few possible explanations include, on the one

hand, that all the short-run effects coming from ius,t are already included in LOISus,t. The

reason for this is the extensive use of U.S. Treasury Bills as collateral in the interbank

loan market. On the other hand, as the time path of ius,t shows, the zero lower-bound of

the interest rates could be down-playing its role here. All the adjustment related to imex,t

has a negative sign. Finally, shocks to the liquidity measures appear to be important, in

particular those stemming from the U.S. This is confirmed by the variance decomposition

analysis shown below.

The short-run adjustment of ius,t as shown in equation (4.10) surprisingly includes the

long-run equilibrium relation towards which it is adjusting. The magnitude, however, is

very small,

Δius,t = −0.018
[−2.199]

δBt−1 + 0.173
[3.650]

Δius,t−1 −0.522
[−2.797]

ΔLOISeur,t−1

− 0.332
[6.678]

Δius,t−2 + 0.598
[3.061]

ΔLOISeur,t−2 − 0.118
[−2.387]

Δius,t−4. (4.10)

Also of interest is the fact that only LOISeur,t is relevant in explaining short-run deviations

from equilibrium. As mentioned above, since banks intensively use U.S. Treasuries as

collateral, then stress events of funding liquidity in Europe could be playing a large role

in the yield of these securities. The absence of LOISus,t may be reflecting the duplicity of

information.

Regarding the short-run behaviour of imex,t in equation (4.11), it is surprising that only

the lagged LOIS variables in the system play a role in its adjustment. This is a possible
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case of weak exogeneity and it is discussed in the next section.

Δimex,t = 0.329
[7.076]

Δimex,t−1 + 0.432
[2.143]

ΔLOISeur,t−3 − 0.480
[−4.055]

ΔLOISus,t−4. (4.11)

A priori the dynamics of LOISus,t and LOISeur,t in equations (4.12) and (4.13) should

only depend on themselves and ius,t. However, a very small effect from the second lag

ΔΦt−2 appears, this may be due to some feed-back effect between LOISus,t and the spot

exchange rate.

ΔLOISus,t = −0.123
[−6.056]

Δius,t−1 + 0.290
[5.595]

ΔLOISus,t−1 + 0.542
[6.797]

ΔLOISeur,t−1

+ 0.011
[2.328]

ΔΦt−2 − 0.050
[−2.350]

Δius,t−2 + 0.101
[1.912]

ΔLOISus,t−2

− 0.362
[−4.328]

ΔLOISeur,t−2 − 0.130
[−2.526]

ΔLOISus,t−3 − 0.166
[−3.350]

ΔLOISus,t−4

+ 0.058
[2.682]

Δius,t−5, (4.12)

ΔLOISeur,t = 0.158
[4.957]

ΔLOISus,t−1 + 0.319
[6.512]

ΔLOISeur,t−1 + 0.145
[4.473]

ΔLOISus,t−2

− 0.290
[−5.644]

ΔLOISeur,t−2 + 0.115
[2.219]

ΔLOISeur,t−3 + 0.063
[4.847]

Δius,t−4

− 0.069
[−2.282]

ΔLOISus,t−4 + 0.151
[5.050]

ΔLOISus,t−5. (4.13)

4.4 Weak Exogeneity and the Common Trends Representation

Weak Exogeneity

A further advantage provided by the model (4.1) is the test for “weakly exogenous

variables”. As defined by Juselius (2006) pp. 193, a variable xj,t ∈ {Xt} is said to be

weakly exogenous if it affects other variables in the system Xt while it is not affected by

them. This is, if the row j of matrix α contains only zeros. Since α is a n × r matrix,

and r = 1 in this paper, then a weak exogeneity test is equivalent to testing for each of

the five rows of α for being different from zero. To this end, a simple t − test statistic is

not suitable since strictly speaking I am comparing across models, so a Likelihood-Ratio

statistic is computed. I show the weak exogeneity test output from CATS in Table 10.
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r 5% Crit-val Φt ius,t imex,t LOISus,t LOISeur,t

1 3.841 31.515
[0.000]

3.848
[0.050]

3.469
[0.063]

0.001
[0.973]

2.200
[0.138]

Table 10: Weak Exogeneity Test. LR-Test statistic, χ2(r), p− values in brackets. Null Hypothesis: The
variable is weakly exogenous.

At a first glance the test allows me to conclude that imex,t, LOISus,t and LOISeur,t are

weakly exogenous. Note, however, that the p− value for ius,t is right on the margin. As a

tie-breaker, let me put forward two arguments to favour taking ius,t as weakly exogenous.

First, a statistical argument, the value of the estimate α̃2,1 = −0.018 corresponding to

regression (4.10) is very small. Second, an intuitive argument regarding the characteristics

of the U.S. Treasuries. Taking imex,t as weakly exogenous at the same time that rejecting

the Null of weak exogeneity for ius,t, would imply that imex,t is a determinant of ius,t which is

at odds with reality. In this way in the rest of the analysis I take ius,t as weakly exogenous.

This is, I assume

α̃ =

(
−0.235
[−6.744]

, 0, 0, 0, 0

)′
. (4.14)

The restricted estimate for α in equation (4.14) means that, the only variable of the

system that adjusts in response to deviations from the long-run relation β̃′Xt−1 = δBt−1, is

Φt. Moreover, the coefficient means that it takes almost four weeks for deviations from the

previous period long-run relation to dissipate for Φt. This is important. Suppose there is

a stationary one-time shock to δBt−4, thus creating arbitrage opportunities. Their effect on

Φs will take four weeks to dissipate.

Common Trends Representation

The VECM set-up also allows me to write (4.1) in its common trends representation

or Moving Average (MA) form, as proved in the Granger Representation Theorem. This

allows the identification of the n − r common trends in the system Xt and has a very

intuitive interpretation. The MA form is written as

Xt = C

t∑
s=1

εs +
∞∑
j=0

C∗j εt−j +X0 (4.15)

C = β⊥

[
α′⊥

(
In −

p−1∑
s=1

Γs

)
β⊥

]−1
α′⊥ = β̃⊥α′⊥ (4.16)
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where β⊥ is the orthogonal complement of β, defined as the (n− r)× r matrix satisfying

β′⊥β = 0 and similarly for α⊥.18 The first component of equation (4.15) deserves special

attention, in particular note that the product C
∑t

s=1 εs is β̃⊥α′⊥
∑t

s=1 εs using (4.16). It

is possible to think of β̃⊥ as matrix measuring the importance (weight) that each of the

common trends α′⊥
∑t

s=1 εs has on Xt.

The n×n matrix C defined in (4.16) is known as the “long-run impact matrix” and it is

interpreted in two possible ways. Column-wise, the element cij, if statistically significant,

means the cumulated effect
∑t

s=1 εj,s has a relevant effect of cij on xi. Row-wise, the

element cij means that xi has been permanently influenced by
∑t

s=1 εj,s in some measure

cij. The matrices C∗j are the current and previous “one-time” effects of each element of εt

on the system Xt and X0 is its initial value.

For the present model, restricted estimates of the long-run impact matrix yield the

following common trend representations. The interested reader can find the full estimation

output in Appendix B.3. Recall that Σ is a full matrix as described in (4.3), Table 11

shows the corresponding correlations for a restricted version, ΣB.

εΦ εi,us εi,mex εLOIS,us εLOIS,eur

S.E. 0.410 0.163 0.231 0.096 0.081
εΦ 1.000
εi,us 0.677 1.000
εi,mex −0.661 −0.053 1.000

εLOIS,us −0.729 −0.553 0.172 1.000
εLOIS,eur −0.568 −0.469 0.150 0.921 1.000

Table 11: Residual Standard Errors and Cross-Correlations. Since the covariance matrix ΣB is symmetric,
I omit the upper triangular elements.

The advantage of the MA form is the representation of each variable as the sum of

the history of previous shocks, which although correlated, are useful in explaining changes

in each element of system Xt. Here I use the restricted estimate C̃ given in Table 28 in

Appendix B.3 to construct the estimated MA expressions -omitting stationary terms. Let

C∗[k,·]j be the kth row of matrix C∗j . Start with Φt, which has a MA representation given

by

Φt = −0.217
[−1.924]

t∑
j=1

εΦ,j+1.568
[3.920]

t∑
j=1

εi,us,j−1.667
[−5.276]

t∑
j=1

εi,mex,j−3.677
[−4.656]

t∑
j=1

εLOIS,us,j+
∞∑
j=0

C∗[1,·]jεt−j.

(4.17)

18The proof of (4.15) and (4.16) is contained in Lütkepohl (2005).
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In line with the weak exogeneity test, equation (4.17) shows all the stochastic trends

have a non-negligible effect on Φt. LOISeur,t is present through the correlation between

εLOIS,us and εLOIS,eur which is very close to 1, as shown in Table 11.

For ius,t, equation (4.18) shows a result in line with its “marginal” weak exogeneity

status that only shocks to itself and εLOIS,us explain its behaviour,

ius,t = 1.099
[6.922]

t∑
j=1

εi,us,j −0.718
[−2.291]

t∑
j=1

εLOIS,us,j +
∞∑
j=0

C∗[2,·]jεt−j. (4.18)

The estimation outcome for imex,t in (4.19) is surprising. I would have expected that at

least a second stochastic trend could be explaining changes in the Mexican Treasury yield.

This issue deserves a deeper study, since the correlations between imex,t and the rest of the

variables is not high enough to justify some second order effect from a different variable in

the system. Although said second order effects should be present since the reduced form

errors εt are contemporaneously related. The structural analysis below shows more light

on this issue,

imex,t = 1.558
[8.739]

t∑
j=1

εi,mex,j +
∞∑
j=0

C∗[3,·]jεt−j. (4.19)

Finally, the MA forms of LOISus,t and LOISeur,t in (4.20) and (4.21) show no surprises,

the variables behave as two weakly exogenous elements, with a high correlation among

them

LOISus,t = −0.223
[−2.374]

t∑
j=1

εi,us,j + 1.377
[7.439]

t∑
j=1

εLOIS,us,j +
∞∑
j=0

C∗[4,·]jεt−j, (4.20)

LOISeur,t = 0.776
[4.989]

t∑
j=1

εLOIS,us,j + 1.117
[4.277]

t∑
j=1

εLOIS,eur,j +
∞∑
j=0

C∗[5,·]jεt−j. (4.21)

So far, I have been able to show the relevance of both LOISus,t and LOISeur,t in

explaining the behaviour of the variables that define δt. The previous analysis comes a

long way in separating effects from each shock into the behaviour of each element of Xt.

There is a shortcoming, however, and that is related to the covariance matrix of the reduced

form errors, ΣB contained in Table 11, not being diagonal. Shocks between LOISus,t and

LOISeur,t cannot be distinguished clearly. To accomplish this, a structural analysis is
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required, which is undertaken in the next section.

4.5 Structural VECM

The SVECM(p) can be readily derived from expression (4.15). The only additional element

I need is a “rotation” matrix relating the reduced-form errors vector εt, to the “structural”

errors vector ut. The latter are called structural since they are contemporaneously uncor-

related among each other. This is, they have a diagonal covariance matrix Ω. Formally,

assume there exists a (n× n) non-singular rotation matrix M such that

ut = Mεt, (4.22)

note that the Choleski decomposition provides a matrix that is a particular case of M .

One of the advantages of estimating the IRFs in a SVECM and not through a Choleski

decomposition matrix is that I can label the shocks as transitory or permanent.19 Juselius

(2006) pp. 278 outlines the conditions that the matrix M must satisfy which I reproduce

here:

1. A distinction between r = 1 transitory and n− r = 4 permanent shocks is made (i.e.

ut =
(
utr,t, u

′
pr,t

)′
, where “tr” stands for transitory and “pr” for permanent).

2. Transitory shocks have no long-run impact on the system.

3. Either Ω = In; or

4. E
[
upr,tu

′
pr,t

]
= In−r with E

[
utr,tu

′
pr,t

] �= 0.

For estimation purposes, it is necessary to assume some causal direction among the va-

riables that have permanent shocks associated, in this case the weakly exogenous variables.

Thus, I assume that ius,t is independent from other permanent shocks and affects LOISus,t.

In turn, LOISeur,t is affected by permanent shocks in LOISus,t. Finally, imex,t is subject to

changes in all permanent shocks. This order obeys the economic logic behind the variables

in the system. That is, structurally, the ius,t follows its own shocks; the banking system of

the U.S. is larger than the European one however interconnected; the European banking

sector is independent of the structural shocks in imex,t -given that Mexico is a small open

economy. Finally, there is one transitory shock in the system causing the variables to

deviate only for a finite period of time.

Estimation in CATS requires me to change the order of the variables in the system,

which I can do without any consequences for the previous results. In particular, let X t be

19Empirical applications of the SVECM are found in Mellander, Vredin, and Warne (1992) and Hansen and Warne (2001).
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the reordered Xt, where now X t = (Φt, ius,t, LOISus,t, LOISeur,t, imex,t)
′. Using (4.22) in

(4.15) I get

X t = D
t∑

s=1

us +
∞∑
j=0

D∗
jut−j, (4.23)

where D = CM−1 and D∗
j = C∗jM

−1. CATS produces restricted estimates of D, D∗
0, D

∗
K

and M . Where the sub-index K is the number of periods that the system takes to converge

back after a transitory shock. Here I have to include the restriction set B, as detailed in

expression (4.7), in the estimation. The full estimation output can be found in Appendix

B.4.

Transitory Shocks

Restricted estimation of the model (4.23) yields the following transitory shock, con-

structed as the product of the first row of the restricted matrix estimate M̃ given in Table

33 and εt,

utr,t = −0.435εΦ,t − 0.569εi,us,t + εLOIS,us,t + 0.162εLOIS,eur,t + 0.390εi,mex,t, (4.24)

after normalizing on the largest coefficient. At this point, I can only state that a structural

transitory shock to the system X t is a linear combination of elements of εt. It is important,

however, that I have found the weight of each reduced-form error in the structural shock.

I will come back to this point.

Permanent Shocks

The four permanent shocks are defined by the last four rows of the normalized matrix

M̃ of Table 33,

upr,1,t = εi,us,t − 0.653εLOIS,us,t + 0.487εLOIS,eur,t, (4.25)

upr,2,t = 0.12εi,us,t + εLOIS,us,t + 0.345εLOIS,eur,t, (4.26)

upr,3,t = −0.331εLOIS,us,t + εLOIS,eur,t, (4.27)

upr,4,t = −0.627εLOIS,us,t + 0.491εLOIS,eur,t + εi,mex,t. (4.28)

I have discarded from equations (4.25) to (4.28) all coefficients that are lower than 0.1

following the practice of Juselius (2006). This may seem arbitrary but three comments

should comfort the reader: First, the software does not provide the standard errors for
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estimates of the SVECM, so an educated guess for the relevance of each shock is necessary.

Second, considering that standard deviations of εt are low as presented in Table 11, the

absolute magnitude of the estimated parameter for each shock should be a useful indicator.

Third, this elimination makes the labelling of the structural shocks possible.

Labelling the Structural Shocks

As suggested in Juselius (2006), allocating labels to the structural shocks is a “ha-

zardous” task, but here I have information on the causality orders. Since εi,mex,t only

shows up in upr,4,t as constructed in equation (4.28), I can associate this shock with imex,t.

According to the MA equation for LOISeur,t (4.21), only shocks to itself and LOISus,t are

relevant to its time path, thus I can associate upr,3,t to LOISeur,t. Finally, the absolute

magnitude in coefficients associated with LOISus,t in equations (4.25) and (4.26) suggests

that ius,t can be associated with upr,1,t, and LOISus,t to upr,2,t.

It is important to point out the downsides associated with the labelling process. It

is still somewhat arbitrary, just as the Choleski decomposition. In the absence of clear

directions of causality and without more information on the possible simultaneous effects

among the elements of X, the labelling should be taken with some reserve. The labels

proposed above are supported by the normalized rotation matrix in Table 33.

Structural Representation

Analysis of the IRFs is the ultimate tool when analysing the dynamics of a VAR model.

To obtain the IRFs of the SVECM, I use the structural long-run impact matrix with

restricted estimates D̃ from Table 36. The full estimation output is given in Appendix

B.4 for the interested reader. Let D∗
[k,·]j be the k − th row of matrix D∗

j . The structural

equation for Φt is given by

Φt = 1.707
t∑

j=1

upr,1,j−2.181
t∑

j=1

upr,2,j+3.007
t∑

j=1

upr,3,j−
t∑

j=1

upr,4,j+
∞∑
j=0

D̃∗
[1,·],jut−j. (4.29)

Note that the first four elements on the right are a linear combination of stochastic trends

constructed out of permanent structural shocks. Assuming the labelling of the shocks is

correct, expression (4.29) allows me to conclude that the forward premium Φt has a positive

relation with the permanent shocks from ius,t and LOISeur,t, while negatively related to

those of LOISus,t and imex,t. Transitory shocks on Φt are contained in the last element of

the right of (4.29). It is interesting to note that, in line with expression (4.7), the effects

on Φt from liquidity shocks have a different sign, conditionally on the source of the shock.
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The structural equation for ius,t is estimated as

ius,t =
t∑

j=1

upr,1,j +
∞∑
j=0

D̃∗
[2,·],jut−j, (4.30)

this expression is independent of the rest of stochastic trends by construction. Transitory

shocks implied by the presence of D̃∗
[2,·],jut−j in (4.30) do play a role, however small, on the

behaviour of ius,t as shown by the IRFs below.

The liquidity measure for the banking sector of the U.S. given by (4.31) is negatively

related to permanent shocks associated to ius,t, in particular I can write

LOISus,t = −0.327
t∑

j=1

upr,1,j +
t∑

j=1

upr,2,j +
∞∑
j=0

D̃∗
[3,·],jut−j. (4.31)

The analogous measure of liquidity for the European banking sector contains information

that is in line with intuition. Note the positive sign of upr,2,t, the permanent shocks on

LOISus,t. This is, when there is a shock to liquidity in the U.S., liquidity in Europe is also

under stress,

LOISeur,t = −0.233
t∑

j=1

upr,1,j + 0.802
t∑

j=1

upr,2,j +
t∑

j=1

upr,3,j +
∞∑
j=0

D̃∗
[4,·],jut−j, (4.32)

where the estimate from the structural long-run impact matrix is 0.802 -close to 1. As

I mentioned in the subsection containing the labelling, the banking sector in Europe is

smaller than the U.S.’s and this explains the one-way dependence assumption for identifi-

cation. Note that both (4.31) and (4.32) account for transitory shocks within the last term

of each expression. Finally, I have the structural equation for imex,t. This will depend on

both the benchmark interest rate of the world and the liquidity conditions in the U.S. and

Europe. The estimation output yields

imex,t = −0.075
t∑

j=1

upr,1,j + 0.496
t∑

j=1

upr,2,j − 0.208
t∑

j=1

upr,3,j +
t∑

j=1

upr,4,j +
∞∑
j=0

D̃∗
[5,·],jut−j.

(4.33)

Expression (4.33) shows that the common trend representation (4.19) hides the contempo-

raneous relation between imex,t and the rest of the variables since it is given in terms of the

reduced form errors. In particular, I find that permanent shocks to liquidity conditions in

the U.S. and Europe have opposite effects on imex,t, although the former more than du-

plicates the latter. The negative sign on the relation with ius,t is something that deserves
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further study. It is at odds with the rationale where ius,t is the benchmark rate. I propose

here a direct explanation. The aforementioned flight-to-quality phenomenon will provide

an environment where, simultaneously, the demand for U.S.’s. debt increases pushing down

its yield and Mexico’s imex,t increases since capital flows from Mexico towards the U.S..

Impulse Response Analysis

Figure 10 presents the IRFs in subplots. Each subplot shows the value of the relevant

variable immediately after a one-standard deviation shock given by Table 37 at t0. Table

38 presents the value after K = 60 weeks -the number of weeks utr,t takes to convergence

back to zero. Some interesting results arise from the column-wise inspection of Figure 10.

The transitory shock utr,t affects considerably the three variables that define δt and

LOISeur,t. The shock has a negative effect on Φt and ius,t. It is worth noting that the

shock pushes up LOISus,t and LOISeur,t for several periods before they gradually crawl

back to their level previous to the shock. This observation leads to conclude that utr,t

causes the liquidity measures to “overshoot” before its effects dissipate.

Regarding upr,1,t, a structural permanent shock to the system associated to ius,t, note

that the initial negative pull on Φt becomes a permanent positive shock. The effect of upr,1,t

on imex,t is immediately positive, then it turns negative for a few periods, then becomes

positive for a non-negligible period, and finally sinks to a negative value. This “swing”

behaviour may be a result of the deep connection between the U.S. and Mexico’s economies.

Finally the effects on LOISus,t “overshoot” but stabilize while the effects on LOISeur,t are

almost monotonically decreasing.

The structural permanent shock related to LOISus,t, upr,2,t, pushes up Φt instanta-

neously but then its effects sink considerably to become permanently negative. For imex,t,

the impulse heads upwards, then it dips and later tends upwards again before stabilizing.

This “swing” behaviour reflects how distressing is a funding liquidity shock in the U.S.

banking sector to imex,t.

When the system suffers a structural permanent shock upr,3,t, associated with LOISeur,t,

it affects Φt in the form of extreme swings for the first few weeks. After that, the value of

the impulse converges steadily to a permanent positive value. Similar volatility is present

in the effect of upr,3,t on imex,t with a considerable overshooting before converging definitely

to a level closer to zero. This is, the shock creates some “turbulence” on imex,t, but its

effects eventually stabilise at a small negative level. Finally, the permanent shock upr,4,t,

associated to imex,t, causes a response of Φt that is negative at the beginning but quickly

turns positive and permanent.

30



It follows from the analysis of the IRFs that the elements of δt, except ius,t, are very

sensible to the structural shocks ut. In particular, Φt is the most sensible in line with its

non-weak exogenous nature. A caveat of the analysis arises here. To compute deviations

from the CIP I need to use ius,t; this, however, is not only the yield on a sovereign debt

instrument, but it also stands for the yield of one of the safest assets in the world. The

latter makes it possible to assume that it is not affected by any permanent shock but its

own. However, it also forces the analysis to be mute on shocks to it, allocating all the

dynamic corrections on δt to Φt and imex,t.

Variance Decomposition Analysis

After I have established that liquidity shocks born in Europe have a role in explaining

deviations form the CIP, here I quantify the relative importance of changes in LOISus,t

and LOISeur,t with a variance decomposition analysis. Appendix B.5 contains Tables 39

- 41 with a summary of the decomposition for 60 steps.20 Inspection of Table 39 reveals

that the liquidity conditions in the U.S.’s banking sector play a much more important role

in changes in ius,t than Europe’s. Surprisingly, they are less important in accounting for

changes in imex,t as shown in Table 40. Accordingly with Mexico’s status as a small open

economy, the source of the liquidity changes is not relevant in explaining changes on imex,t.

Finally, Table 41 shows that shocks to LOISus,t are at least twice as important in

period 1 and, at most, 27 times in period 25 when looking at Φt. Note that this estimate

is accounting for several particular features. First, the U.S.’s banking sector is the largest

in the world. Second, I am analysing the CIP involving the USD, the currency in which

LOISus,t is traded. This should help the case that, however small when compared with

LOISus,t, changes in LOISeur,t are important in determining deviations from the CIP.

5 Concluding Remarks

Several implications and remarks can be drawn from this work. First, expressions (4.7),

(4.17), and (4.29) show that LOISeur,t has a long-run effect on deviations from the CIP,

however small -as revealed by the variance decomposition analysis. Second, IRFs quantify

the effect of a shock on the interest rate in Mexican debt on the forward premium.

Third, by looking at the dynamics of the forward premium in expression (4.9), shocks to

the CIP augmented with liquidity measures take about four periods to dissipate. That is,

the forward premium is on a self-correcting path. The fourth implication stems from the

20I thank the anonymous referee for suggesting the variance decomposition analysis. This was estimated in EViews for the
VECM(6) with restrictions set B and a Choleski matrix with order as follows: ius,t, LOISus,t, LOISeur,t, imex,t,Φt.
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prevailing opposite sign of the coefficients on the liquidity measures in expressions (4.7),

(4.11) and (4.28), which can be interpreted as follows: Mexican assets, its sovereign debt

in particular, seem to be substitutes for European assets within the sample period. Thus,

the analysis implies that shocks in liquidity in Europe could precede a fall in the interest

rate on Mexican instruments and refinancing debt strategies could take advantage of this.

This work provides an additional tool to form an expectation regarding the duration

and importance of shocks to funding liquidity. The analysis points to the existence of

arbitrage opportunities -which will be taken only if the premium is high enough- for any

market participant that was able to obtain funding as close to U.S. treasury interest rate

as possible. The above said opportunities remained since 2009 up-to the end of the sample

period and may be explained by funding liquidity constraints. Another way of looking

at this conclusion is: there should be no deviations from the CIP once truer liquidity

conditions are considered.

There are some caveats in the analysis to consider. First, the borderline conclusion of the

liquidity measures being I(1) should be present before making further conclusions. Second,

the labelling of the structural shocks remains as arbitrary as a Choleski decomposition.

Third, many market participants are not able to fund their liquidity at LIBOR or OIS rates,

but at higher ones, future analysis should aim to find a liquidity measure for non-prime

borrowers.

Further research should focus on testing different models that account for the border-

line stationarity of the LOIS·,t and test other measures associated with market liquidity,

such as Credit Default Swaps or Volatility indexes. The financial series present consider-

able ARCH-like behaviour, this may be a source of information to explore. Continuous

time models could prove to be a natural way to model high frequency financial series.

Finally, structural breaks can be considered to account for “once-and-for-all” events, such

as Lehman’s demise.
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Figure 10: IRFs from the SVECM.
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Appendices

A Data

This appendix contains the Bloomberg ticker of each variable. To ease the exposition, I divide the variables

in 2 groups:

1. Main Variables:

• Spot Exchange Rate USD per 1 MXN: (St)
−1 =MXN Curncy.

• Forward Exchange Rate USD per 1 MXN at maturity 1 month: (Ft)
−1=MXN1M Curncy.

• Interest Rate of U.S. Treasury Debt 1-month constant maturity: ius,t =USGG1M Index.

• Interest Rate of Mexican Debt in MXN of 1-month maturity: imex,t =MPTBA Curncy.

2. LIBOR-OIS

• LIBOR-OIS Spread for the U.S.: LOISus,t =(US0003M Index) - (USSOC Curncy).

• LIBOR-OIS Spread for Europe: LOISeur,t =(EUR003M Index) - (EUSWEC Curncy).

B Estimation Results

B.1 Unrestricted VECM(6) with r = 1

This section presents the full estimation output of the VECM(6) corresponding to the cointegrating equa-

tion (4.4).

β̂′

Φt−1 ius,t−1 imex,t−1 LOISus,t−1 LOISeur,t−1 c
1.000
[NA]

−1.032
[−11.786]

0.815
[8.145]

5.385
[6.405]

−4.344
[−4.952]

0.785
[1.360]

Table 12

α̂

ΔPhit −0.239
[−7.175]

Δius,t −0.017
[−2.186]

Δimex,t 0.015
[1.974]

ΔLOISus,t −0.000
[−0.044]

ΔLOISeur,t 0.003
[1.665]

Table 13
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Π̂

Φt−1 ius,t−1 imex,t−1 LOISus,t−1 LOISeur,t−1 c
ΔΦt −0.239

[−7.175]
0.247
[7.175]

−0.195
[−7.175]

−1.288
[−7.175]

1.039
[7.175]

−0.188
[−7.175]

Δius,t −0.017
[−2.186]

0.017
[2.186]

−0.014
[−2.186]

−0.091
[−2.186]

0.073
[2.186]

−0.013
[−2.186]

Δimex,t 0.015
[1.974]

−0.016
[−1.974]

0.013
[1.974]

0.083
[1.974]

−0.067
[−1.974]

0.012
[1.974]

ΔLOISus,t −0.000
[−0.044]

0.000
[0.044]

−0.000
[−0.044]

−0.001
[−0.044]

0.001
[0.044]

−0.000
[−0.044]

ΔLOISeur,t 0.003
[1.665]

−0.003
[−1.665]

0.003
[1.665]

0.018
[1.665]

−0.015
[−1.665]

0.003
[1.665]

Table 14

The Short-Run Matrices

Γ̂1

ΔΦt−1 Δius,t−1 Δimex,t−1 ΔLOISus,t−1 ΔLOISeur,t−1

ΔΦt −0.307
[−6.500]

−0.284
[−1.388]

−0.773
[−3.943]

2.654
[4.993]

−0.009
[−0.011]

Δius,t 0.017
[1.602]

0.174
[3.683]

0.069
[1.529]

−0.085
[−0.691]

−0.533
[−2.851]

Δimex,t 0.003
[0.235]

0.024
[0.502]

0.325
[7.045]

−0.120
[−0.962]

0.115
[0.604]

ΔLOISus,t 0.007
[1.406]

−0.126
[−6.249]

−0.007
[−0.386]

0.301
[5.728]

0.539
[6.746]

ΔLOISeur,t −0.001
[−0.235]

−0.019
[−1.556]

−0.014
[−1.139]

0.154
[4.786]

0.322
[6.562]

Table 15

Γ̂2

ΔΦt−2 Δius,t−2 Δimex,t−2 ΔLOISus,t−2 ΔLOISeur,t−2

ΔΦt −0.237
[−4.878]

0.058
[0.270]

−0.651
[−3.180]

0.380
[0.704]

−0.508
[−0.599]

Δius,t 0.014
[1.240]

−0.333
[−6.677]

−0.005
[−0.101]

−0.036
[−0.285]

0.590
[3.013]

Δimex,t 0.008
[0.731]

0.036
[0.702]

−0.042
[−0.879]

−0.171
[−1.343]

0.103
[0.516]

ΔLOISus,t 0.012
[2.563]

−0.053
[−2.495]

0.026
[1.309]

0.110
[2.069]

−0.368
[−4.388]

ΔLOISeur,t −0.001
[−0.208]

−0.014
[−1.064]

0.003
[0.225]

0.141
[4.299]

−0.287
[−5.581]

Table 16
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Γ̂3

ΔΦt−3 Δius,t−3 Δimex,t−3 ΔLOISus,t−3 ΔLOISeur,t−3

ΔΦt −0.179
[−3.717]

−0.161
[−0.713]

0.063
[0.308]

−1.215
[−2.316]

−2.111
[−2.470]

Δius,t 0.020
[1.796]

−0.063
[−1.205]

0.034
[0.706]

0.110
[0.910]

−0.238
[−1.204]

Δimex,t 0.021
[1.864]

0.018
[0.347]

0.060
[1.232]

−0.116
[−0.938]

0.442
[2.196]

ΔLOISus,t 0.005
[1.033]

−0.039
[−1.771]

0.010
[0.502]

−0.122
[−2.357]

0.089
[1.055]

ΔLOISeur,t −0.005
[−1.651]

0.005
[0.395]

−0.007
[−0.534]

0.002
[0.070]

0.117
[2.261]

Table 17

Γ̂4

ΔΦt−4 Δius,t−4 Δimex,t−4 ΔLOISus,t−4 ΔLOISeur,t−4

ΔΦt −0.094
[−2.072]

−0.506
[−2.360]

−0.121
[−0.595]

0.208
[0.412]

0.752
[0.880]

Δius,t 0.006
[0.534]

−0.119
[−2.399]

−0.009
[−0.190]

0.002
[0.015]

0.172
[0.870]

Δimex,t 0.012
[1.090]

0.070
[1.378]

0.061
[1.279]

−0.496
[−4.170]

−0.137
[−0.679]

ΔLOISus,t 0.001
[0.181]

−0.009
[−0.417]

0.004
[0.182]

−0.160
[−3.211]

−0.115
[−1.367]

ΔLOISeur,t −0.005
[−1.769]

0.064
[4.890]

−0.008
[−0.649]

−0.072
[−2.361]

0.039
[0.763]

Table 18

Γ̂5

ΔΦt−5 Δius,t−5 Δimex,t−5 ΔLOISus,t−5 ΔLOISeur,t−5

ΔΦt 0.068
[1.671]

−0.205
[−0.937]

−0.189
[−0.968]

0.205
[0.411]

−0.510
[−0.637]

Δius,t 0.005
[0.518]

0.058
[1.142]

0.015
[0.338]

0.037
[0.321]

−0.072
[−0.390]

Δimex,t 0.009
[0.956]

−0.035
[−0.683]

0.010
[0.217]

0.175
[1.490]

0.216
[1.149]

ΔLOISus,t 0.000
[0.051]

0.054
[2.522]

0.016
[0.852]

−0.027
[−0.542]

0.096
[1.217]

ΔLOISeur,t −0.004
[−1.525]

0.011
[0.829]

−0.005
[−0.459]

0.148
[4.894]

−0.046
[−0.955]

Table 19
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B.2 VECM(6) with r = 1 Restriction Set B

β̃B′

Φt−1 ius,t−1 imex,t−1 LOISus,t−1 LOISeur,t−1 c

β̃B′
1.000
[NA]

−1.000
[NA]

1.000
[NA]

3.929
[5.977]

−2.799
[−3.997]

−0.502
[−3.307]

Table 20

α̃
ΔΦt −0.235

[−6.744]

Δius,t −0.018
[−2.199]

Δimex,t 0.013
[1.554]

ΔLOISus,t 0.002
[0.675]

ΔLOISeur,t 0.003
[1.439]

Table 21

Π̃

Φt ius,t imex,t LOISus,t LOISeur,t c
ΔΦt −0.235

[−6.744]
0.235
[6.744]

−0.235
[−6.744]

−0.924
[−6.744]

0.658
[6.744]

0.118
[6.744]

Δius,t −0.018
[−2.199]

0.018
[2.199]

−0.018
[−2.199]

−0.069
[−2.199]

0.049
[2.199]

0.009
[2.199]

Δimex,t 0.013
[1.554]

−0.013
[−1.554]

0.013
[1.554]

0.050
[1.554]

−0.036
[−1.554]

−0.006
[−1.554]

ΔLOISus,t 0.002
[0.675]

−0.002
[−0.675]

0.002
[0.675]

0.009
[0.675]

−0.006
[−0.675]

−0.001
[−0.675]

ΔLOISeur,t 0.003
[1.439]

−0.003
[−1.439]

0.003
[1.439]

0.012
[1.439]

−0.008
[−1.439]

−0.002
[−1.439]

Table 22
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The Short-Run Matrices for Restrictions B

Γ̃1

ΔΦt−1 Δius,t−1 Δimex,t−1 ΔLOISus,t−1 ΔLOISeur,t−1

ΔΦt −0.302
[−6.268]

−0.278
[−1.346]

−0.767
[−3.875]

2.457
[4.646]

0.163
[0.200]

Δius,t 0.018
[1.664]

0.173
[3.650]

0.071
[1.566]

−0.094
[−0.777]

−0.522
[−2.797]

Δimex,t 0.004
[0.341]

0.020
[0.414]

0.329
[7.076]

−0.097
[−0.783]

0.101
[0.531]

ΔLOISus,t 0.005
[1.070]

−0.123
[−6.056]

−0.011
[−0.578]

0.290
[5.595]

0.542
[6.797]

ΔLOISeur,t −0.001
[−0.194]

−0.020
[−1.592]

−0.013
[−1.103]

0.158
[4.957]

0.319
[6.512]

Table 23

Γ̃2

ΔΦt−2 Δius,t−2 Δimex,t−2 ΔLOISus,t−2 ΔLOISeur,t−2

ΔΦt −0.229
[−4.644]

0.081
[0.376]

−0.618
[−2.992]

0.163
[0.304]

−0.356
[−0.418]

Δius,t 0.015
[1.314]

−0.332
[−6.678]

−0.002
[−0.035]

−0.047
[−0.379]

0.598
[3.061]

Δimex,t 0.009
[0.770]

0.031
[0.608]

−0.043
[−0.880]

−0.147
[−1.167]

0.087
[0.436]

ΔLOISus,t 0.011
[2.328]

−0.050
[−2.350]

0.025
[1.215]

0.101
[1.912]

−0.362
[−4.328]

ΔLOISeur,t −0.001
[−0.203]

−0.015
[−1.116]

0.003
[0.204]

0.145
[4.473]

−0.290
[−5.644]

Table 24

Γ̃3

ΔΦt−3 Δius,t−3 Δimex,t−3 ΔLOISus,t−3 ΔLOISeur,t−3

ΔΦt −0.170
[−3.484]

−0.138
[−0.610]

0.105
[0.508]

−1.407
[−2.690]

−1.965
[−2.288]

Δius,t 0.021
[1.867]

−0.062
[−1.199]

0.037
[0.777]

0.100
[0.833]

−0.228
[−1.155]

Δimex,t 0.021
[1.847]

0.014
[0.263]

0.058
[1.194]

−0.096
[−0.782]

0.432
[2.143]

ΔLOISus,t 0.004
[0.915]

−0.037
[−1.643]

0.009
[0.452]

−0.130
[−2.526]

0.090
[1.068]

ΔLOISeur,t −0.005
[−1.665]

0.005
[0.348]

−0.007
[−0.570]

0.006
[0.183]

0.115
[2.219]

Table 25
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Γ̃4

ΔΦt−4 Δius,t−4 Δimex,t−4 ΔLOISus,t−4 ΔLOISeur,t−4

ΔΦt −0.084
[−1.846]

−0.482
[−2.240]

−0.079
[−0.386]

0.058
[0.116]

0.880
[1.025]

Δius,t 0.006
[0.603]

−0.118
[−2.387]

−0.006
[−0.120]

−0.006
[−0.054]

0.180
[0.913]

Δimex,t 0.011
[1.041]

0.066
[1.303]

0.059
[1.234]

−0.480
[−4.055]

−0.146
[−0.727]

ΔLOISus,t 0.001
[0.156]

−0.007
[−0.314]

0.003
[0.147]

−0.166
[−3.350]

−0.114
[−1.351]

ΔLOISeur,t −0.005
[−1.811]

0.063
[4.847]

−0.009
[−0.689]

−0.069
[−2.282]

0.038
[0.725]

Table 26

Γ̃5

ΔΦt−5 Δius,t−5 Δimex,t−5 ΔLOISus,t−5 ΔLOISeur,t−5

ΔΦt 0.075
[1.824]

−0.160
[−0.729]

−0.129
[−0.658]

0.040
[0.081]

−0.370
[−0.460]

Δius,t 0.005
[0.565]

0.059
[1.182]

0.019
[0.433]

0.030
[0.260]

−0.062
[−0.334]

Δimex,t 0.009
[0.902]

−0.041
[−0.805]

0.006
[0.135]

0.195
[1.680]

0.209
[1.105]

ΔLOISus,t 0.000
[0.071]

0.058
[2.682]

0.016
[0.848]

−0.037
[−0.751]

0.095
[1.203]

ΔLOISeur,t −0.004
[−1.567]

0.010
[0.756]

−0.006
[−0.530]

0.151
[5.050]

−0.048
[−0.991]

Table 27

B.3 The Common Trends or Moving Average Representation

The Long-Run Impact Matrix, C̃∑
εΦ

∑
εi,us

∑
εi,mex

∑
εLOIS,us

∑
εLOIS,eur

Φt −0.217
[−1.924]

1.568
[3.920]

−1.667
[−5.276]

−3.677
[−4.656]

2.085
[1.572]

ius,t −0.081
[−1.810]

1.099
[6.922]

0.028
[0.222]

−0.718
[−2.291]

0.535
[1.016]

imex,t 0.088
[1.383]

0.037
[0.163]

1.558
[8.739]

−0.278
[−0.624]

0.716
[0.957]

LOISus,t 0.035
[1.311]

−0.223
[−2.374]

0.030
[0.409]

1.377
[7.439]

0.219
[0.706]

LOISeur,t 0.032
[1.419]

−0.132
[−1.669]

−0.006
[−0.104]

0.776
[4.989]

1.117
[4.277]

Table 28
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Common Trends

Φt ius,t imex,t LOISus,t LOISeur,t

α′⊥,1 0.010
[0.662]

0.000
[NA]

0.000
[NA]

1.000
[NA]

0.000
[NA]

α′⊥,2 0.054
[1.513]

0.000
[NA]

1.000
[NA]

0.000
[NA]

0.000
[NA]

α′⊥,3 0.013
[1.417]

0.000
[NA]

0.000
[NA]

0.000
[NA]

1.000
[NA]

α′⊥,4 −0.075
[−2.106]

1.000
[NA]

0.000
[NA]

0.000
[NA]

0.000
[NA]

Table 29

The Loadings to the Common Trends

α′⊥,1 α′⊥,2 α′⊥,3 α′⊥,4

β̃⊥,1 −3.677
[−4.656]

−1.667
[−5.276]

2.085
[1.572]

1.568
[3.920]

β̃⊥,2 −0.718
[−2.291]

0.028
[0.222]

0.535
[1.016]

1.099
[6.922]

β̃⊥,3 −0.278
[−0.624]

1.558
[8.739]

0.716
[0.957]

0.037
[0.163]

β̃⊥,4 1.377
[7.439]

0.030
[0.409]

0.219
[0.706]

−0.223
[−2.374]

β̃⊥,5 0.776
[4.989]

−0.006
[−0.104]

1.117
[4.277]

−0.132
[−1.669]

Table 30

Residual S.E. and Cross-Correlations

εΦ εi,us εi,mex εLOIS,us εLOIS,eur

S.E. 0.410 0.163 0.231 0.096 0.081
εΦ 1.000 NA NA NA NA
εi,us 0.677 1.000 NA NA NA
εi,mex −0.661 −0.053 1.000 NA NA

εLOIS,us −0.729 −0.553 0.172 1.000 NA
εLOIS,eur −0.568 −0.469 0.150 0.921 1.000

Table 31
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B.4 Structural MA-model

Rotation Matrix, M̃ :
[
ut = M̃εt

]
εΦ εi,us εLOIS,us εLOIS,eur εi,mex

utr −1.525 −1.996 3.508 0.569 1.368
upr,1 −0.498 6.761 −4.418 3.290 0.171
upr,2 0.102 1.709 14.284 4.929 0.493
upr,3 0.195 0.483 −9.871 29.778 −1.016
upr,4 −0.348 −0.242 4.235 −3.316 −6.751

Table 32

Rotation Matrix, M̃ (Normalized)

εΦ εi,us εLOIS,us εLOIS,eur εi,mex

utr −0.435 −0.569 1.000 0.162 0.390
upr,1 −0.074 1.000 −0.653 0.487 0.025
upr,2 0.007 0.120 1.000 0.345 0.035
upr,3 0.007 0.016 −0.331 1.000 −0.034
upr,4 0.052 0.036 −0.627 0.491 1.000

Table 33

Inverse Rotation Matrix, M̃−1:
[
εt = M̃−1ut

]
utr upr,1 upr,2 upr,3 upr,4

εΦ −0.559 −0.197 0.110 0.002 −0.110
εi,us −0.042 0.128 0.036 −0.019 0.000

εLOIS,us 0.005 −0.012 0.058 −0.008 0.006
εLOIS,eur 0.007 −0.005 0.019 0.031 −0.002
εi,mex 0.030 0.000 0.020 −0.019 −0.138

Table 34

Inverse Rotation Matrix, M̃−1 (Normalized)

utr upr,1 upr,2 upr,3 upr,4

εΦ 1.000 0.353 −0.197 −0.003 0.198
εi,us −0.327 1.000 0.285 −0.151 0.003

εLOIS,us 0.095 −0.212 1.000 −0.132 0.107
εLOIS,eur 0.234 −0.157 0.604 1.000 −0.063
εi,mex −0.219 −0.002 −0.146 0.140 1.000

Table 35
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Structural Long-Run Impact Matrix, D̃ = ˜CM−1 (Normalized)∑
utr

∑
upr,1

∑
upr,2

∑
upr,3

∑
upr,4

Φt 0.000 1.707 −2.181 3.007 −1.000
ius,t 0.000 1.000 −0.000 0.000 0.000

LOISus,t 0.000 −0.327 1.000 −0.000 −0.000
LOISeur,t 0.000 −0.233 0.802 1.000 −0.000
imex,t 0.000 −0.075 0.496 −0.208 1.000

Table 36

100*Contemporaneous Impact, D̃∗0 = ˜C∗0M−1

utr upr,1 upr,2 upr,3 upr,4

Φt −55.850 −19.688 11.029 0.188 −11.036
ius,t −4.182 12.777 ∗ ∗ ∗

LOISus,t 0.548 −1.222 5.778 ∗ ∗
LOISeur,t 0.719 −0.482 1.853 3.070 ∗
imex,t 3.019 0.027 2.016 −1.927 −13.763

Table 37

100*Impact After K = 60 Periods:

utr upr,1 upr,2 upr,3 upr,4

Φt −0.052 27.673 −17.420 9.329 22.709
ius,t −0.008 16.241 ∗ ∗ ∗

LOISus,t 0.002 −5.310 7.994 ∗ ∗
LOISeur,t 0.003 −3.785 6.410 3.111 ∗
imex,t 0.003 −1.219 3.965 −0.646 −22.720

Table 38
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B.5 Variance Decomposition Analysis

Step Std Error LOIS∗us,t LOIS∗eur,t
1 0.1448 0.0000 0.0000
5 0.3162 3.0547 0.3806
10 0.4417 4.2641 0.3929
15 0.5566 5.5524 0.4791
20 0.6624 6.4054 0.5829
25 0.7603 7.0302 0.6586
30 0.8509 7.4934 0.7182
35 0.9351 7.8408 0.7643
40 1.0137 8.1080 0.8002
45 1.0874 8.3174 0.8288
50 1.1569 8.4847 0.8518
55 1.2228 8.6205 0.8705
60 1.2854 8.7325 0.8861

Table 39: Variance Decomposition for ius,t. LOIS∗·,t is in per-cent.

Step Std Error LOIS∗us,t LOIS∗eur,t
1 0.1479 0.4968 0.0737
5 0.4545 0.2833 0.4759
10 0.6979 0.2291 1.1543
15 0.8788 0.6158 1.5560
20 1.0321 0.7474 1.6184
25 1.1678 0.8716 1.6486
30 1.2901 0.9708 1.6535
35 1.4026 1.0486 1.6512
40 1.5070 1.1117 1.6460
45 1.6049 1.1628 1.6402
50 1.6972 1.2049 1.6345
55 1.7849 1.2399 1.6294
60 1.8685 1.2694 1.6248

Table 40: Variance Decomposition for imex,t. LOIS∗·,t is in per-cent.
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Step Std Error LOIS∗us,t LOIS∗eur,t
1 0.6292 1.8580 0.9556
5 0.8728 7.5661 1.2925
10 1.0871 15.5207 0.9455
15 1.3034 20.7197 0.8764
20 1.5432 24.6402 0.9195
25 1.7865 26.9521 0.9997
30 2.0236 28.3763 1.0756
35 2.2494 29.2796 1.1396
40 2.4627 29.8843 1.1910
45 2.6640 30.3091 1.2322
50 2.8540 30.6205 1.2652
55 3.0339 30.8575 1.2919
60 3.2047 31.0434 1.3139

Table 41: Variance Decomposition for Φt. LOIS∗·,t is in per-cent.
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